USN

Fourth Semester B.E. Degree Examination, Dec.2015/Jan.2016

Field Theory

Time: 3 hrs.

Max. Marks: 100

Note: Answer FIVE full questions, selecting at least TWO questions from each part.

PART - A

- Explain the terms "electric field intensity" and derive expression for field due to infinite line
 - Use Gauss law to determine electric field intensity due to infinite line charge. (06 Marks)
 - The flux density $\overline{D} = \frac{r}{3} \frac{r}{a_r} \frac{r}{nc} / \frac{m^2}{m^2}$ is in the free space.
 - i) Find E at r = 0.2m
 - ii) Find the total Electric flux leaving the sphere of r = 0.2m
 - iii) Find the total charge within the sphere of r = 0.3m.

(06 Marks)

- Show that the energy required to assemble 'n' number of point changes is $W_E = \frac{1}{2} \sum_{m=1}^{n} Q_m V_m$ and hence derive expression form energy in electric field in terms of field quantities (08 Marks)
 - b. Potential is given by $V = 2(x+1)^2 (y+2)^2 (z+3)^2$ volts in free space. At a point P(2, -1, 4). Calculate i) Potential ii) Electric field intensity
 - iii) Flux density and
 - iv) Volume charge density. (06 Marks)
 - c. Find the work done in moving a charge of +2C from (2, 0, 0)m to (0, 2, 0)m along the straight line path joining two points, if the electric field is $\vec{E} = (12x\vec{a}_x - 4y\vec{a}_y) \text{ v/m}$.

(06 Marks)

- Arrive at the Poisson's equation in Cartesian coordinates. Deduce Laplace's equation from 3 Poisson's equation.
 - Verify that the potential field $V = 2x^2 3y^2 + z^2$ satisfies the Laplace's equation. (06 Marks)
 - Using Laplace equation, derive the expression for the capacitance of a co axial cable.

(08 Marks)

State and explain Biot - Savart's law. Using this, find the magnetic field intensity in the vicinity of an infinitely long, straight, filamentary current I Amperes along Z – axis.

(08 Marks)

- Discuss the concept of vector magnetic potential and hence show that $\overline{A} = \frac{\mu_0}{4\pi} \int \frac{\overline{J}}{4} dv$ where \overline{A} is the vector magnetic potential and \overline{J} is the current density. (06 Marks)
- At a point P(x, y, z) the components of vector magnetic potential \overline{A} are given as $A_x = 4x + 3y + 2z$, $A_y = 5x + 6y + 3z$ and $A_z = 2x + 3y + 5z$. Determine \overline{B} at point P and state its nature. (06 Marks)

PART – B

5 a. State and explain the Lorentz force equation.

(06 Marks)

- b. A conductor 4m long lies along the y axis with a current of 10A in the ay direction. Find the force on the conductor if the field in the region is $\overline{B} = 0.005 \, \overline{a}_x$, Tesla. (06 Marks)
- c. Discuss the boundary conditions at the interface between two media of different permeabilities. (08 Marks)
- 6 a. Show that

$$\nabla \bullet \overline{J} = \frac{-\partial \rho v}{\partial t}$$

Where $\vec{J} = \text{conduction current density A/m}^2$

 ρ = volume charge density in cm³

(08 Marks)

b. Find the induced voltage in the conductor if $\overline{B} = 0.04 \ \overline{a}_y \ T$ and

$$\overline{V} = 2.5 \sin 10^3 \text{ t } \overline{a}_z \text{ m/s}$$

Find induced e.m.f if \overline{B} is changed to 0.04 \overline{a}_x T.

(12 Marks)

- 7 a. Derive the wave equation starting from Maxwell's equation for free space. (10 Marks)
 - b. A lossy dielectric has $\mu_r = 1$, $\epsilon_r = 50$ and $\sigma = 60$ T/m at 15.9MHz. Find α , β , V and η if the uniform plane wave is travelling through the medium. (10 Marks)
- 8 a. Derive the expression for transmission coefficient and reflection coefficient. (10 Marks)
 - b. With necessary expression, explain standing wave ratio.

(10 Marks)

* * * * *